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Аннотация: 
 
Введение. Прогрессирующая миопия (близорукость) у детей представляет собой одну из наиболее острых медико-соци-
альных проблем современной офтальмологии.  
Цель исследования – разработать модель машинного обучения для прогнозирования исхода склеропластики у детей 
через 12 месяцев после операции. 
Материалы и методы. Сформирован набор данных о 128 глазах 128 пациентов, которым провели склеропластику в ФГАУ 
«НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России (г. Москва). Разработку моделей машин-
ного обучения для бинарной классификации проводили с использованием языка программирования Python 3 и библиотеки 
PyCaret.  
Всего было разработано 19 моделей: Extra Trees Classifier, Linear Discriminant Analysis, Gradient Boosting Classifier, Naive 
Bayes, Logistic Regression, CatBoost Classifier, K Neighbors Classifier, MLP Classifier, Decision Tree Classifier, Quadratic Discrim-
inant Analysis, Random Forest Classifier, Ada Boost Classifier, Light Gradient Boosting Machine, Gaussian Process Classifier, Ex-
treme Gradient Boosting, SVM – Radial Kernel, Dummy Classifier, Ridge Classifier, SVM – Linear Kernel. В качестве целевой 
переменной был прогноз результата склеропластики в виде бинарного признака: благоприятный (64 глаза) и неблагопри-
ятный (64 глаза) исход. Благоприятным исходом признавали результат, который соответствовал значению годового гради-
ента прогрессирования через 12 месяцев после склеропластики более -1,00 дптр, а неблагоприятный – -1,00 дптр и менее. 
Независимыми переменными на основании, которых планировалось разрабатывать модели машинного обучения были сле-
дующими: возраст, пол, НКОЗ до, Sph до, Cyl до, МКОЗ до, СЭ до, K min до, K max до, R до, ПЗО до. Для каждой модели 
машинного обучения осуществляли подбор гиперпараметров с использованием кросс-валидации на 10 подвыборках с ис-
пользованием библиотеки Optune, оптимизацию осуществляли по метрике AUC. Рассчитывали следующие метрики каче-
ства моделей: AUC, accuracy, precision, recall, F1-score. Для разработки и тестирования моделей машинного обучения общий 
набор данных был разделен на обучающую и тестовую выборку в соотношении 69:31, стратификацию проводили по целе-
вой переменной. Оценку важности признаков моделей проводили с использованием метода feature_importances_. 
Результаты. Разработаны 19 моделей машинного обучения для бинарной классификации исхода склеропластики у детей 
через 12 месяцев после операции (благоприятный / неблагоприятный исход), среди которых наилучшее качество по мет-
рике AUC показала модель Extra Trees Classifier (AUC 0,79), все другие метрики качества (Accuracy, Precision, Recall, F1) 
для данной модели составили 0,70. Наиболее важными признаками для прогноза явились следующие показатели: возраст 
пациента, сферический компонент рефракции до операции, ПЗО до операции и НКОЗ до операции. 
Заключение. Разработанная модель показала приемлемое качество для прогнозирования исхода склеропластики у детей 
через 12 месяцев после операции. 
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 ВВЕДЕНИЕ  
 

Прогрессирующая миопия (близорукость) 
у детей представляет собой одну из наиболее 
острых медико-социальных проблем современ-
ной офтальмологии. По данным всемирных эпи-

демиологических исследований, распростра-
ненность миопии неуклонно растет, и, согласно 
прогнозам Института зрения Брайена Холдена, 
к 2050 году миопией будет страдать около 50% 
населения земного шара, причем у 10% (около 
1 млрд человек) прогнозируется миопия 8 
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Summary: 
 
Introduction. Progressive myopia (nearsightedness) in children represents one of the most acute medical and social prob-
lems in modern ophthalmology. 
Purpose. To develop a machine learning model for predicting the outcome of scleroplasty in children 12 months after sur-
gery. 
Material and methods. A dataset was formed comprising 128 eyes of 128 patients who underwent scleroplasty at the S.N. 
Fyodorov Eye Microsurgery Federal State Institution (Moscow). The development of machine learning models for binary clas-
sification was conducted using the Python 3 programming language and the PyCaret library.  
A total of 19 models were developed: Extra Trees Classifier, Linear Discriminant Analysis, Gradient Boosting Classifier, Naive 
Bayes, Logistic Regression, CatBoost Classifier, K Neighbors Classifier, MLP Classifier, Decision Tree Classifier, Quadratic 
Discriminant Analysis, Random Forest Classifier, Ada Boost Classifier, Light Gradient Boosting Machine, Gaussian Process 
Classifier, Extreme Gradient Boosting, SVM – Radial Kernel, Dummy Classifier, Ridge Classifier, and SVM – Linear Kernel. 
The target variable was the prognosis of the scleroplasty result in the form of a binary feature: favorable (64 eyes) and un-
favorable (64 eyes) outcome. An outcome was considered favorable if the annual progression gradient 12 months after scle-
roplasty was greater than -1.00 D, and unfavorable if it was -1.00 D or less. The independent variables used to develop the 
machine learning models were: age, gender, UCVA (uncorrected visual acuity) before, Sph (sphere) before, Cyl (cylinder) 
before, BCVA (best corrected visual acuity) before, SE (spherical equivalent) before, K min before, K max before, R (radius) 
before, and AL (axial length) before. For each machine learning model, hyperparameter tuning was performed using cross-
validation on 10 folds using the Optuna library; optimization was carried out based on the AUC metric. The following quality 
metrics were calculated: AUC, accuracy, precision, recall, and F1-score. For the development and testing of the machine 
learning models, the total dataset was divided into training and test sets in a 69:31 ratio, with stratification performed by the 
target variable. Feature importance assessment was conducted using the feature_importances_ method. 
Results. 19 machine learning models were developed for the binary classification of scleroplasty outcomes in children 12 
months after surgery (favorable/unfavorable outcome). Among them, the Extra Trees Classifier showed the best quality ac-
cording to the AUC metric (AUC 0.79); all other quality metrics (Accuracy, Precision, Recall, F1) for this model were 0.70. 
The most important features for prediction were the following indicators: patient age, spherical component of refraction 
before surgery, AL (axial length) before surgery, and UCVA before surgery. 
Conclusion. The developed model demonstrated acceptable quality for predicting the outcome of scleroplasty in children 
12 months after surgery. 
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высокой степени [1]. Высокая миопия ассоции-
рована с риском развития таких угрожающих 
зрению осложнений, как миопическая макуло-
патия, отслойка сетчатки, катаракта и глаукома, 
что делает задачу контроля прогрессирования 
заболевания приоритетной для систем здраво-
охранения [2]. 

В арсенале офтальмологов стран СНГ и 
ряда государств Восточной Европы склеро-
укрепляющие вмешательства (склеропла-
стика) остаются одним из основных методов 
патогенетического лечения прогрессирующей 
близорукости [2, 3]. Механизм действия скле-
ропластики основан на механическом укрепле-
нии заднего полюса глаза и стимуляции 
обменных процессов в склере, хориоидее и 
сетчатке, что способствует стабилизации реф-
ракции и замедлению роста передне-задней 
оси (ПЗО) глаза. Несмотря на доказанную эф-
фективность в ряде клинических исследова-
ний, результат операции варьирует: у части 
пациентов прогрессирование останавлива-
ется, в то время как у других, несмотря на вме-
шательство, продолжается градиентный рост 
миопии [4, 5]. 

Проблема персонализированного отбора 
пациентов на хирургическое лечение стоит 
крайне остро [5-7]. Традиционные методы про-
гнозирования, основанные на линейном ана-
лизе отдельных клинических параметров 
(возраст, годовой градиент прогрессирования), 
часто не учитывают сложные нелинейные взаи-
мосвязи между биометрическими показателями 
глаза. В условиях цифровизации здравоохране-
ния и развития телемедицинских технологий по-
является возможность использования методов 
искусственного интеллекта (ИИ) и машинного 
обучения (Machine Learning, ML) для создания 
систем поддержки принятия врачебных реше-
ний (СППВР) [8, 9, 11]. 

Алгоритмы машинного обучения демон-
стрируют высокую эффективность в задачах 
медицинской диагностики и прогнозирования, 
зачастую превосходя возможности традицион-
ной статистики. В офтальмологии ML активно 
применяется для диагностики диабетической 
ретинопатии, глаукомы и возрастной макуляр-
ной дегенерации [10, 12, 14]. Однако работ, по-
священных прогнозированию исходов склеро- 
пластических операций с использованием ан-

самблевых методов ML, в мировой литературе 
представлено недостаточно [13, 15-17]. 

Цель исследования – разработать модель 
машинного обучения для прогнозирования ис-
хода склеропластики у детей через 12 месяцев 
после операции. Создание такой модели позво-
лит врачам первичного звена и специалистам 
специализированных центров с высокой точ-
ностью определять целесообразность хирурги-
ческого вмешательства, минимизируя коли- 
чество неэффективных операций и связанных 
с ними рисков. 

 
 МАТЕРИАЛЫ И МЕТОДЫ   

 
Исследование проводилось как ретроспек-

тивное когортное исследование на базе одного 
из ведущих офтальмологических центров Рос-
сии. 

Сформирован набор данных о 128 глазах 
128 пациентов, которым провели склеропла-
стику в ФГАУ «НМИЦ «МНТК «Микрохирургия 
глаза» им. акад. С.Н. Федорова» Минздрава 
России (г. Москва). Критериями включения в 
исследование являлись: наличие прогресси-
рующей миопии, возраст пациентов от 8 до 17 
лет, выполнение склероукрепляющей операции 
по единой методике, наличие полных данных 
клинического обследования до операции и 
через 1 год после нее. Критерии исключения: 
наличие сопутствующей офтальмопатологии 
(кератоконус, увеиты, врожденная глаукома), 
ранее перенесенные операции на глазном 
яблоке. 

В качестве целевой переменной был про-
гноз результата склеропластики в виде бинар-
ного признака: благоприятный (64 глаза) и 
неблагоприятный (64 глаза) исход. Сбаланси-
рованность классов в выборке (50% на 50%) яв-
ляется важным методическим аспектом, 
позволяющим избежать смещения модели в 
сторону мажоритарного класса и обеспечиваю-
щим адекватность метрики Accuracy. 

Критерии эффективности были строго 
формализованы. Благоприятным исходом при-
знавали результат, который соответствовал 
значению годового градиента прогрессирова-
ния через 12 месяцев после склеропластики 
более -1,00 дптр, а неблагоприятный – -1,00 
дптр и менее. 

40

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ



41

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

В контексте миопии градиент прогрессиро-
вания обычно оценивается в отрицательных 
значениях. Значение «более -1,00 дптр» (напри-
мер, -0,5 дптр или 0 дптр) свидетельствует о 
стабилизации или медленном прогрессирова-
нии. Значение «-1,00 дптр и менее» (например, 
-1,5 или -2,0 дптр) указывает на быстрое про-
грессирование, что интерпретируется как от-
сутствие эффекта от операции. 

Независимыми переменными на основа-
нии, которых планировалось разрабатывать мо-
дели машинного обучения были следующими: 
возраст, пол, НКОЗ до, Sph до, Cyl до, МКОЗ до, 
СЭ до, K min до, K max до, R до, ПЗО до. 

Расшифровка переменных: 
• Возраст (лет) – предиктор активности 

роста глаза. 
• Пол – биологический фактор. 
• НКОЗ до – некорригированная острота 

зрения до операции. 
• Sph до – сферический компонент реф-

ракции (дптр). 
• Cyl до – цилиндрический компонент реф-

ракции (дптр). 
• МКОЗ до – максимально корригирован-

ная острота зрения. 
• СЭ до – сферический эквивалент реф-

ракции. 
• K min / K max – кератометрия (прелом-

ляющая сила роговицы в сильном и сла-
бом меридианах). 

• R до – радиус кривизны роговицы. 
• ПЗО до – длина передне-задней оси 

глаза (мм), ключевой морфометрический 
параметр миопии. 

 
Процедура машинного обучения 
 

Разработку моделей машинного обучения 
для бинарной классификации проводили с ис-
пользованием языка программирования Python 
3 и библиотеки PyCaret [11]. Библиотека Py-
Caret представляет собой low-code инструмент 
автоматизированного машинного обучения, 
позволяющий значительно ускорить процесс 
экспериментирования, сравнения алгоритмов и 
развертывания моделей. 

Всего было разработано 19 моделей: Extra 
Trees Classifier, Linear Discriminant Analysis, Gra-
dient Boosting Classifier, Naive Bayes, Logistic Re-

gression, CatBoost Classifier, K Neighbors Classi-
fier, MLP Classifier, Decision Tree Classifier, Quad-
ratic Discriminant Analysis, Random Forest 
Classifier, Ada Boost Classifier, Light Gradient 
Boosting Machine, Gaussian Process Classifier, 
Extreme Gradient Boosting, SVM – Radial Kernel, 
Dummy Classifier, Ridge Classifier, SVM – Linear 
Kernel.  

Использование столь широкого спектра 
алгоритмов, от линейных (Logistic Regression, 
Ridge) до сложных ансамблевых методов (Gra-
dient Boosting, CatBoost, Extra Trees), обеспечи-
вает робастность исследования и позволяет 
найти оптимальную гиперплоскость или решаю-
щее правило для разделения классов. 

Для разработки и тестирования моделей 
машинного обучения общий набор данных был 
разделен на обучающую и тестовую выборку в 
соотношении 69:31, стратификацию проводили 
по целевой переменной. Стратификация гаран-
тирует, что соотношение благоприятных и не-
благоприятных исходов в обучающей и тесто- 
вой выборках будет идентичным исходному на-
бору, что критически важно при небольших вы-
борках. 

Для каждой модели машинного обучения 
осуществляли подбор гиперпараметров с ис-
пользованием кросс-валидации на 10 подвы-
борках с использованием библиотеки Optuna, 
оптимизацию осуществляли по метрике AUC. 
Optuna – это современный фреймворк для ав-
томатической оптимизации гиперпараметров, 
использующий байесовскую оптимизацию (TPE 
– Tree-structured Parzen Estimator), что эффек-
тивнее классического перебора по сетке (Grid 
Search). 

Рассчитывали следующие метрики каче-
ства моделей: AUC, accuracy, precision, recall, 
F1-score. 

• AUC (Area Under the Curve ROC) – интег-
ральная метрика качества классифика-
ции, устойчивая к дисбалансу классов. 

• Accuracy – доля правильных ответов. 
• Precision (Точность) – способность мо-

дели не присваивать положительную 
метку отрицательному объекту. 

• Recall (Полнота) – способность модели 
найти все положительные объекты. 

• F1-score – гармоническое среднее между 
Precision и Recall.8 



Оценку важности признаков моделей прово-
дили с использованием метода feature_impor-
tances_. Это позволяет интерпретировать модель, 
объясняя врачу, какие именно клинические па-
раметры повлияли на прогноз. 
 

 РЕЗУЛЬТАТЫ   
 

В ходе экспериментального моделирования 
было проведено обучение и валидация 19 алго-
ритмов классификации. 

Разработаны 19 моделей машинного обуче-
ния для бинарной классификации исхода скле-
ропластики у детей через 12 месяцев после 
операции (благоприятный/неблагоприятный ис- 
ход), среди которых наилучшее качество по мет-
рике AUC показала модель Extra Trees Classifier 
(AUC 0,79), все другие метрики качества (Accu-
racy, Precision, Recall, F1) для данной модели со-
ставили 0,70. 

Модель Extra Trees (Extremely Randomized 
Trees) является ансамблевым методом, похожим 
на Random Forest, но с большей степенью слу-
чайности при выборе разделений в узлах де-
ревьев, что часто позволяет снизить дисперсию 
(variance) модели и уменьшить риск переобуче-
ния на малых выборках. Значение AUC 0,79 ин-
терпретируется как «хорошее» качество клас- 
сификации, позволяющее использовать модель 
в клинической практике в качестве скрининго-
вого инструмента. Метрики Accuracy, Precision, 
Recall и F1 на уровне 0,70 свидетельствуют о 
сбалансированности модели: она с одинаковой 
успешностью выявляет как пациентов, которым 
операция поможет, так и тех, для кого она будет 
неэффективна. 

 
Анализ важности признаков 
 

Ключевым аспектом для клинического до-
верия к модели является интерпретируемость. 
Наиболее важными признаками для прогноза 
явились следующие показатели: возраст паци-
ента, сферический компонент рефракции до 
операции, ПЗО до операции и НКОЗ до опера-
ции. 

Можно выделить следующую патофизиоло-
гическую обоснованность данных признаков: 

1. Возраст. Является мощнейшим предик-
тором прогрессирования. Известно, что раннее 

начало миопии (в 7-9 лет) ассоциировано с 
более агрессивным течением и худшим прогно-
зом по сравнению с миопией, возникшей в под-
ростковом возрасте34. 

2. ПЗО (длина глаза). Исходная длина глаза 
коррелирует с запасом прочности склеры. Экс-
тремально длинные глаза могут хуже реагиро-
вать на стандартные техники склеропластики 
из-за истончения оболочек. 

3. Сферический компонент (Sph). Отра-
жает текущую степень миопии. 

4. НКОЗ. Косвенно отражает функциональ-
ное состояние зрительного анализатора и сте-
пень рефракционных нарушений. 

 
 ОБСУЖДЕНИЕ  

 
В эпоху доказательной медицины и пере-

хода к парадигме 4P-медицины (предиктивная, 
профилактическая, персонализированная, пар-
тисипативная), разработка инструментов про-
гнозирования исходов лечения становится 
стандартом. Наше исследование показало, что 
методы машинного обучения способны извле-
кать скрытые паттерны из стандартных клини-
ческих данных для прогноза эффективности 
склеропластики. 

 
Сравнительный анализ и технические аспекты 

 
Выбор Extra Trees Classifier как лучшей мо-

дели согласуется с рядом исследований в обла-
сти биомедицинской информатики, где ан- 
самблевые методы часто превосходят нейро-
нные сети на табличных данных малого и сред-
него объема (менее 10 000 наблюдений). 
Нейронные сети, такие как MLP, требуют значи-
тельно больших объемов данных для настройки 
весов, в то время как деревья решений эффек-
тивно работают с нелинейными зависимостями 
и устойчивы к выбросам. 

Достигнутая точность (AUC 0,79) является 
обнадеживающей, однако указывает на нали-
чие факторов, не учтенных в модели. Вероятно, 
генетические маркеры, биомеханические свой-
ства корнеосклеральной оболочки (гистерезис 
роговицы) или уровень повседневной зритель-
ной нагрузки могли бы повысить точность про-
гноза. Тем не менее, использование только 
стандартных параметров (рефракция, биомет-
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рия, возраст) делает разработанную модель 
универсальной и доступной для любого оф-
тальмологического кабинета, не оснащенного 
дорогостоящим оборудованием для генетиче-
ского анализа или анализа биомеханики глаза. 

 
Значение для телемедицины и электронного 
здравоохранения 
 

Разработанная модель имеет высокий по-
тенциал для интеграции в телемедицинские 
сервисы. 

1. Логистика пациентов. Врач районной 
поликлиники может ввести данные пациента 
(возраст, рефракцию, ПЗО) в веб-интерфейс 
или мобильное приложение, подключенное к 
модели, и получить вероятность успешного ис-
хода операции. Это позволит направлять в фе-
деральные центры только тех детей, у которых 
прогнозируется высокий эффект от хирургии. 

2. Второе мнение. Система может служить 
инструментом «второго мнения» для молодых 
специалистов, снижая вероятность врачебных 
ошибок. 

3. Оптимизация ресурсов. Снижение числа 
операций с заведомо низким прогнозируемым 
эффектом позволит перераспределить ре-
сурсы здравоохранения на более эффектив-
ные методы лечения для данной группы паци- 
ентов (например, ортокератологию или конт-
роль периферического дефокуса). 

Ограничения исследования 
 
К ограничениям работы следует отнести 

относительно небольшой объем выборки (128 
глаз), что характерно для пилотных медицин-
ских исследований, а также ретроспективный 
дизайн. Валидация модели на внешней выборке 
из других клинических центров необходима для 
подтверждения ее обобщающей способности. 
 

 ВЫВОДЫ  
 

1. Интеграция искусственного интеллекта 
в детскую офтальмохирургию открывает новые 
горизонты персонализированного лечения. 

2. Разработанная модель показала при-
емлемое качество для прогнозирования исхода 
склеропластики у детей через 12 месяцев после 
операции. 

3. Практическое применение данной мо-
дели, особенно в формате телемедицинского 
сервиса, способно повысить качество оказания 
офтальмологической помощи, обеспечивая на-
учно обоснованный подход к выбору тактики 
лечения прогрессирующей миопии.  

4. Дальнейшие исследования должны быть 
направлены на расширение набора данных, 
включение новых предикторов (биомеханика, 
генетика) и проведение проспективных мульти-
центровых испытаний. /
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