ВВЕДЕНИЕ
Удовлетворенность больных лечением – довольно острая медико-социальная проблема, связанная не только с вопросами качества оказываемой помощи, но и приверженностью больных лечению [1], что имеет значение в повышении уровня здоровья нации [2].
Говоря об удовлетворенности больных медицинской помощью, представляются важными несколько ее аспектов: польза от лечения, желание продолжать лечение, удовлетворенность общением с лечащим врачом и переносимость лечения [3]. Также, существенным является понимание уровня удовлетворенности больного лечением в целом, без выделения ее частных аспектов.
В этой связи, в практическом отношении, значительный интерес вызывают возможности прогнозирования удовлетворенности конкретного пациента. Однако, при решении такой задачи привычными средствами, может потребоваться проведение довольно большого объема научных исследований, что представляется крайне затратным по требуемым для решения такой задачи ресурсам.
С другой стороны, в современной литературе накоплено определенное количество данных о статистической связи удовлетворенности медицинской помощью с социально-демографическими сведениями о больном, которые можно получить без проведения специальных опросов или тестирования в короткий срок.
Некоторыми авторами предлагается выделять две категории сведений о больном: неизменяемые характеристики самого пациента (далее мы их обозначим, как базовые факторы) и факторы модифицируемые, среди которых основную роль играет характер взаимодействия медицинского персонала с пациентом далее – ситуационные факторы [4].
Неизменяемые факторы могут называться базовыми еще и по причине распространенности термина – «базовые сведения» при характеристике сведений о больном в используемых сегодня амбулаторных картах: сюда входят такие сведения, как пол, возраст, семейное положение и т.п.
Ситуационные факторы сохраняются непродолжительное время, в связи с текущей, актуальной ситуацией (в рассматриваемой нами проблеме удовлетворенности, такой ситуацией является получение и оказания реабилитационной помощи).
Анализ литературных источников позволяет говорить о накоплении достаточно большого объема сведений о связи базовых факторов с уровнем удовлетворенности больных медицинской помощью.
Так, на основе анализа вторичных данных управления здравоохранения ветеранов, департамента по делам ветеранов США, G.J. Young и соавторы [5] приходят к выводу, что демографические характеристики – возраст, биофизиологические признаки – состояние здоровья и раса неизменно оказывают статистически значимое влияние на показатели удовлетворенности пациентов качеством реабилитации. Интересные данные приводит O.A. Bernal и соавторы [6] о том, что у молодых людей отмечается снижение уровня удовлетворенности медицинской помощью в отличие от пациентов более старших возрастных групп.
Одинокий образ жизни и отсутствие семьи часто приводятся как условия, негативно влияющие на здоровье [7]. В одной из довольно крупных работ, включавшей более 66 000 респондентов из 17 стан Европы и Израиля, было установлено, что проживание в одиночестве снижает уровень удовлетворенности [8].
Низкий уровень грамотности пациентов зачастую ассоциируется с рядом проблем, возникающих при оказании медицинской помощи, что отражается на качестве здоровья [9] и, разумеется, на удовлетворенности таких больных оказываемой медицинской помощью.
Курение табака рассматривается в качестве привычки, существенно ухудшающей психическое здоровье, что косвенно способствует снижению удовлетворенности многими аспектами жизни, включая и удовлетворенность лечением [10].
Исследование, проведенное в Великобритании в конце прошлого века и включавшее интервьюирование 1 245 респондентов, позволило предположить связь инвалидности и удовлетворенности медицинской помощью [11].
С учетом того, что данные о возрасте, поле, семейном положении, образовании и т.д., с одной стороны, базо-универсальны, а, с другой стороны, имеются свидетельства, что эти данные связаны с уровнем удовлетворенности медицинской помощью пациентов. Поэтому представляется обоснованной попытка использовать такие сведения для обучения искусственного интеллекта (ИИ) прогнозированию уровня удовлетворенности, что позволит еще до начала реализации программ лечения и реабилитации оценить потенциальную пользу раннего вмешательства сотрудников клиники с целью предотвращения низкой удовлетворенности больного.
Актуальность применения ИИ в медицинском прогнозировании настолько высока, что ряд авторов предлагает отказаться патентовать алгоритмы ИИ и сделать их открытыми и широкодоступными [12]. Так, например, для языка Python эти возможности предоставляются открытой программной библиотекой машинного обучения TensorFlow, открытой нейросетевой библиотекой Keras и некоторыми другими источниками.
После разочарования в возможностях ИИ в медицине (период «зимы ИИ») вновь появляется более обоснованный, чем ранее и практически ориентированный оптимизм. Однако, возникают опасения нового свойства, – что развитие технологий ИИ может негативно отразиться на количестве рабочих мест для врачей и занятости медицинского персонала [13]. В этой связи представляется важным осуществлять разработку алгоритмов, ориентированных не на замену врача, а на создание его искусственных помощников. Такая задача представляется более этичной, как по отношению к медицинским работникам, так и более безопасной для пациентов. К аналогичному, сдержанному подходу применения ИИ, призывают и большинство специалистов, занимающихся вопросами этики и безопасности применения ИИ [14].
В техническом плане наибольший интерес для прогнозирования представляют две технологии, относимые к слабому типу ИИ – искусственные нейронные сети и генетические алгоритмы. В настоящей работе речь пойдет только об искусственных нейронных сетях. Их применение может дать значительную пользу по улучшению медицинских прогнозов самого разного рода [15]. Однако, задачи предсказательной аналитики требуют обучения машинного алгоритма адекватными входными данными, которые могут быть как качественными, так и количественными. Но, самое важное – они должны быть достаточно информативными и иметь приемлемый уровень предикативной мощности для обучения нейронной сети.
Еще одна проблема – выбор архитектуры нейронной сети. Разные типы искусственных нейронных сетей дают прогнозы разного качества, что может зависеть от особенностей входных данных, использованных при обучении.
В связи с вышесказанным представляется актуальной оценка эффективности обучения искусственных нейронных сетей прогнозированию уровня удовлетворенности пациентов на основе базовых сведений (пол, возраст и т.п.), которые можно получить еще на этапе заполнения медицинской документации, до проведения врачебного осмотра. Для того, чтобы врач мог сопоставить данные, получаемые им при обследовании больного с данными предлагаемыми машинными алгоритмами.
Цель исследования: oценить возможности использования нейронных сетей разного типа в прогнозировании уровня удовлетворенности пациентов на основе базовых сведений.
Дизайн исследования: исследование проведено в группе пациентов стационара специализированной клиники восстановительного лечения. Были собраны базовые сведения (факторы), на основе которых с помощью компьютерных алгоритмов осуществлялся поиск оптимальной архитектуры нейросети, ее обучение и тестирование.
Пациенты были распределены в две группы: группа обучения ИИ и группа тестирования.
У пациентов в качестве входного набора данных использовались базовые сведения (факторы) по таким категориям, как пол, возраст, семейное положение (женат/не женат, замужем/не замужем), условия проживания (один или с семьей), образование (высшее/не высшее), курение (курит/не курит), наличие инвалидности и группа (инвалидности нет, инвалидность какой группы), давность заболевания в годах, давность инвалидности в годах.
После сбора сведений от пациентов из группы обучения полученные наборы данных были задействованы для поиска оптимальной архитектуры нейросети, при которой сеть дает прогноз с минимально возможной ошибкой. Выбор осуществлялся между двумя группами сетей – многослойными сетями с прямой связью (MLF) и сетями Байесовского типа (OPH). Затем, точность предсказаний проверялась в группе тестирования. Сравнивались реальные оценки пациентами своей удовлетворённости с предсказываемыми машинными алгоритмами. На основе этого делался вывод о точности прогнозирования сети.
МАТЕРИАЛЫ И МЕТОДЫ
Материалом исследования послужили сведения, полученные от 98 пациентов специализированной клиники восстановительного лечения, распределенных в две группы. В группу обучения ИИ вошли 78 человек (данные от них послужили основой для обучения ИИ) и группа тестирования в 20 человек (данные от этой группы оценивались для тестирования обученной нейронной сети с целью определения ошибки прогностической аналитики). По полу, возрасту и иным показателям группы были сопоставимы. Распределение в группы осуществлялось с помощью генератора случайных чисел.
Среди пациентов стационара с различными заболеваниями опорно-двигательного аппарата (М00-М99 по МКБ-10) было 26 мужчин и 72 женщины, средний возраст составил 57,6 года±13,2 года. Состояли в браке 46 пациента, 52 не состояли в брачных отношениях. Проживали с семьей 53 пациентов, 45 живут без семьи – одинокие. Имеют высшее образование 59 человек, не имеют высшего образования 39 пациентов. Курят 12 пациентов, остальные 86 человек не имеют этой привычки. Инвалидность 3 группы имели 11 человек, инвалидность 2 группы имели 14 человек, остальные 73 пациента не имели установленной инвалидность. Давность заболевания по поводу, которого пациенты получали лечение в стационаре составила в среднем 1,78 года. Давность установления инвалидности, у тех пациентов, у кого она есть (25 человек), составила в среднем 5,17 года.
РЕЗУЛЬТАТЫ
Структура данных для обучения искусственного интеллекта (входные данные) кроме базовых сведений включала данные об удовлетворенности больных реабилитацией/лечением (8,6 балла ± 1,1 балла), субъективно определяемой пользой от лечения (8,2 баллов ±1,83 балла), желанием продолжать назначенное лечение (9,5 балла ± 0,82 балла), удовлетворенностью взаимодействием с лечащим врачом (8,7 балла ±1,13 балла), переносимостью лечением (9,4 балла ±0,95 балла).
И, если базовые сведения использовались в качестве входных данных для обучения нейросетей, то уровень удовлетворенности лечением (реабилитацией) являлся выходным параметром нейросети.
Анализ связи между субъективными оценками удовлетворенности и изучаемыми факторами
Коэффициент детерминации субъективно определяемой пользы от лечения в зависимости от удовлетворенности лечением (реабилитацией) в уравнении полиномиальной регрессии (со степенью полинома =2) – R² = 0,26. Коэффициент детерминации субъективно определяемой пользы от лечения в зависимости от (предиктивной переменной) желания продолжать начатое лечение R² = 0,38, в зависимости от удовлетворенности взаимодействием с врачом – R²=0,29 и в зависимости от переносимости лечения – R² = 0,17.
Таким образом, связь между удовлетворенностью лечением, как обобщенным показателем и ее частными аспектами, оказалась невысокой, коэффициент детерминации самой лучшей модели – «желание продолжать начатое лечение» оказался ниже 50% (обычно считающегося критическим для оценки приемлемости модели).
По данным корреляционного анализа при рассмотрении переменных в качестве независимых, между уровнем удовлетворенности лечением (реабилитацией) и пользой от лечения U-критерий Манна-Уитни составил Z=0,3 (р=0,76), Критерий Колмогорова-Смирнова =0,27 (р=0,33). Аналогично была оценена корреляция с уровнем удовлетворенности лечением (реабилитацией) желания продолжать лечение (по критерию Манна-Уитни Z = 0,89 при р=0,37, по критерию Колмогорова-Смирнова максимальная разница = -0,4 при р=0,035), удовлетворенность взаимодействием с врачом (по критерию Манна-Уитни Z = 0,39 при р=0,68, по критерию КолмогороваСмирнова максимальная разница = -0,13 при р=0,97) и переносимость лечения (по критерию Манна-Уитни Z = 2,4 при р=0,01, по критерию Колмогорова-Смирнова максимальная разница = -0,4 при р=0,035).
Как видно, статистически достоверная корреляция наблюдалась только между уровнем удовлетворенности лечением (реабилитацией), с одной стороны, и желанием продолжать лечение и переносимостью лечения, с другой стороны.
Анализ связи базовых данных (факторов) с уровнем удовлетворенности пациентов проводился для количественных переменных с помощью регрессионного анализа. Определено, что коэффициент детерминации оказался очень низким. Так в модели удовлетворенности лечением в зависимости от возраста R² =0,018, от давности заболевания R²= 0,059, от давности инвалидности R²=0,06.
Результаты обучения нейросети
Как уже говорилось, для обучения была использована структура входных данных, включавшая количественные (возраст, давность заболевания в годах, давность установления инвалидности в годах) и качественные показатели (пол, возраст, группа инвалидности, семейное положение, образование, курение). Эти данные сопоставлялись с уровнем удовлетворенности больных (табл. 1).
Таблица 1. Структура данных иcпользованных для обучения нейронных сетей
Table 1. Data structure used for training neural networks
Типы показателей
|
Входной набор данных
|
Типы обученных нейронных сетей
|
Выходной параметр
|
---|---|---|---|
Количественные показатели | Возраст | многослойные сети с прямой связью(MLF) сети Байесовского типа(OPH) |
Уровень удовлетворенности реабилитацией |
Давность заболевания | |||
Давность установления инвалидности | |||
Качественные показатели | Пол | ||
Группа инвалидности | |||
Семейное положение | |||
Образование | |||
Курение |
В результате обучения сети была определена лучшая ее конфигурация в виде числового предиктора ОРН-сети. Процент плохих прогнозов такой сети (толерантность 30%): 0,0000%. Среднеквадратическая ошибка: 0,74. Средняя абсолютная погрешность: 0,53. Стандартное отклонение абсолютной ошибки: 0,5. Точность прогнозирования составила 87%.
При тестировании на случайно отобранных случаях процент плохих прогнозов (толерантность 30%): 0,0000%, Среднеквадратическая ошибка: 1,23. Средняя абсолютная погрешность: 1,17. Стандартное отклонение абсолютной ошибки: 0,3.
Отношение прогнозов, сформированных на основе данных основной группы и фактических результатов, полученных у обученной нейронной сети в группе тестирования представлено на рисунке 1, где по оси абсцисс приводятся фактические баллы (реально полученные у пациентов), а по оси ординат приведены прогнозируемые показатели (рассчитанные нейронной сетью). Знак «+» показывает величину ошибки отклонившихся прогнозов.
Рис. 1. Прогнозируемые против фактических результатов в тестовом режиме
Fig. 1. Predicted vs. Actual Test Results
Предиктивная точность нейронной сети против линейного предиктора представлена в таблице 2.
Таблица 2. Линейный предиктор против нейронной сети
Table 2. Linear predictor versus neural network
Линейный предиктор / Linear predictor
|
Нейронная сеть / Neural network
|
|
---|---|---|
R2 | 0,4995 | — |
Среднеквадратичная ошибка (обучение) Root mean square error (training) |
0,86 | 0,74 |
Среднеквадратичная ошибка (тестирование) Root mean square error (testing) |
2,07 | 1,22 |
По сравнению с другими типами нейронных сетей ОРН-сеть имела самый низкий показатель ошибочных прогнозов. Сравнение представлено в таблице 3.
Таблица 3. Сравнение среднеквадратичных ошибок разных типов нейронных сетей
Table 3. Comparison of mean square errors of different types of neural networks
Средняя квадратичная ошибка / Mean square error | |
---|---|
Линейный предиктор Linear predictor | 2,07 |
ОРН-сеть | 1,23 |
Узлы МПР-сети 2 | 2,62 |
Узлы МПР-сети 3 | 1,86 |
Узлы МПР-сети 4 | 4,65 |
ОБСУЖДЕНИЕ
Полученные результаты свидетельствуют, что между включенными в структуру данными, использованными в настоящей работе для обучения нейросети и удовлетворенностью, существует достаточно выраженная связь (линейный предиктор R²=0,4995).
В тоже время, данные корреляционного анализа и регрессионного анализа (применялся полином 2 степени) свидетельствуют, что приемлемой с точки зрения достоверности связь оказывалась только между уровнем удовлетворенности лечением (реабилитацией), с одной стороны, и желанием продолжать лечение и переносимостью лечения, с другой стороны. Связь между другими изученными факторами была невысокой.
Оптимальной конфигурацией нейронной сети из имевшихся в использованной нами компьютерной программе NeuralTools являлись сети Байесовского типа.
По сравнению с линейным предиктором обученная нейронная сеть имела в два раза меньшую ошибку предсказаний. Учитывая, что сеть прогнозировала количественные показатели удовлетворенности, такой ошибкой можно пренебречь. Ошибка не была столь значительной, чтобы это могло сказаться на оценке рисков неудовлетворенности пациентов и соответствующем реагировании служб медицинского сервиса.
Таким образом, полученные результаты свидетельствуют, что применение социальнодемографических и биофизиологических данных о больном (которые можно получить еще на этапе оформления документации при поступлении на лечение) для обучения нейронных сетей позволяет достаточно точно прогнозировать удовлетворенность больных.
ВЫВОДЫ
ЛИТЕРАТУРА
Прикрепленный файл | Размер |
---|---|
Скачать статью | 398.01 кб |