Перейти к основному содержанию
Выпуск №4, 2025
Правовой суверенитет личности в цифровом здравоохранении в эпоху искусственного интеллекта
Выпуск №3, 2025
Цифровое здравоохранение: прогноз на 2025-2030 гг
Выпуск №2, 2025
Цифровые технологии в удаленном мониторинге родов с системой поддержки принятия врачебных решений (СППВР)
Выпуск №1, 2025
Цифровые технологии для укрепления здоровья и профилактики заболеваний у пожилых людей
Выпуск №4, 2024
Компьютерная реконструкция взаимодействия генов, ассоциированных с синдромом Ангельмана
Выпуск №3, 2024
Телемедицина сегодня: тенденции использования телемедицинских консультаций на опыте регионов
Выпуск №2, 2024
Мобильные приложения для психологического благополучия: отношение пользователей и определение требований
Выпуск №1, 2024
Диагноз в эпоху цифровой медицины
Выпуск №4, 2023
Искусственный интеллект в здравоохранении России: сбор и подготовка данных для машинного обучения
Выпуск №3, 2023
Китай как поставщик медицинского оборудования в РФ. Варианты сотрудничества и особенности работы с китайскими поставщиками
Выпуск №2, 2023
Опыт преподавания телемедицины в системе высшего профессионального образования Отношение медицинских работников к телемедицинским технологиям
Выпуск №1, 2023
Новые подходы к диагностическим информационным системам в радиологии Модифицируемые факторы среды помещения: влияние на здоровье человека и цифровой мониторинг Антропоморфные роботы в медицине: варианты технологий и перспективы
Выпуск №4, 2022
Профессиональное выгорание врачей: скрытый кризис здравоохранения. Данные интернет-опроса врачей
Выпуск №3, 2022
Взаимодействие клинической и диагностической медицины. Результаты интернет-опроса врачей
Выпуск №2, 2022
Мобильные приложения для поддержания психического здоровья: обзор оценок пользователей Роботы УЗИ: готовые решения и перспективные направления
Выпуск №1, 2022
Цифровая трансформация патологоанатомической службы как путь повышения качества медицинской помощи
Выпуск №4, 2021
Клинические рекомендации МЗ РФ: готовы ли врачи их выполнять? Результаты интернет-опроса врачей.
Выпуск №3, 2021
Виртуальная реальность (VR) в клинической медицине: международный и российский опыт
Выпуск №2, 2021
Дистанционные консультации пациентов: что изменилось за 20 лет?
Выпуск №1, 2021
Первые результаты участия в пилотном проекте Минздрава России по дистанционному мониторированию артериального давления
Выпуск №4, 2020
Автоматизация процесса выявления у беременных заболевания COVID-19
Выпуск №3, 2020
Дистанционная когнитивно-поведенческая психотерапия стрессового расстройства, связанного с пандемией COVID-19
Выпуск №2, 2020
Дистанционное образование в медицинском вузе в период пандемии COVID-19: первый опыт глазами студентов
Выпуск №1, 2020
Технологии продолжительного мониторинга артериального давления: перспективы практического применения Телемедицинские технологии в армии Китая
Выпуск №1-2, 2019
Роль искусственного интеллекта в медицине Информационная система поддержки принятия врачебных решений
Выпуск №3, 2018 год
II Всероссийский форум по телемедицине, цифровизации здравоохранения и медицинскому маркетингу «ТЕЛЕМЕДФОРУМ 2019» Эффективность телемедицинских консультаций «пациент-врач» Телереабилитация: рандомизированное исследование исходов
Номер №1-2, 2018
Ответственность при использовании телемедицины: врач или юрист Скрининг меланомы: искусственный интеллект, mHealth и теледерматология
Номер №3, 2017
Телемедицинские технологии для службы лучевой диагностики Москвы
Номер №2, 2017
Первичная телемедицинская консультация «пациент-врач»: первая систематизация методологии
Номер №1, 2017
1. Систематический обзор применения интернет-мессенджеров в телемедицине 2. Телемедицина и социальные сети в борьбе с наркозависимостью
Номер №1, 2016 (Пилотный выпуск)
1. Систематический обзор эффективности и значимости носимых устройств в  практическом здравоохранении 2. Организация виртуальных посещений отделений интенсивной терапии..
Номер №1, 2015 (Пилотный выпуск)
1. Телеассистирование в диагностике и лечении урологических заболеваний 2. Телемониторинг пациентов с кистозным фиброзом: результаты 10 лет работы

Цифровая патоморфология: создание системы автоматизированной микроскопии

DOI: 10.29188/2712-9217-2021-7-4-27-47
Для цитирования: Лебедев Г.С., Шадеркин И.А., Тертычный А.С., Шадеркина А.И. Цифровая патоморфология: создание системы автоматизированной микроскопии. Российский журнал телемедицины и электронного здравоохранения 2021;7(4);27-47; https://doi.org/10.29188/2712-9217-2021-7-4-27-47
Лебедев Г.С., Шадеркин И.А., Тертычный А.С., Шадеркина А.И.
2812

Введение. В последнее время активное развитие получила цифровая патология. Базой для изменения специальности в сторону цифровой патологии становится метод Полного сканирования стекол или Whole slide imaging (WSI), позволяющий перевести изображения патологоанатомических препаратов в цифровой формат. Значительная нагрузка на врачей-патологоанатомов, недостаточность оснащения патологоанатомических штатов приводят к потребности в изменении работы специалистов и требуют внедрения новых технологий, которые позволят оптимизировать и облегчить работу с патологоанатомическим материалом. Целью данной статьи стало проведение обзора имеющихся на международном и российском рынке решений для сканирования патологоанатомических материалов и сфер применения этих решений.

Материалы и методы. Поиск статей производился в базе данных Pubmed. Поиск информации о сканирующих микроскопах проводился на сайтах разработчиков, в том числе из открытых источников на данных сайтах, а также сайте FDA.

Основная часть. Рассмотрены области применения сканирования препаратов, а также микроскопы, с помощью которых возможно осуществление сканирования, приведены сферы применения и ограничения использования цифровых технологий в медицине. На основе анализа литературы описана классификация устройств для сканирования микропрепаратов. Первый вид микроскопов – это микроскопы-сканеры, являющиеся закрытыми системами микроскопии, в которых камеры и объективы находятся внутри устройства, а сканирование препаратов происходит на высокой скорости с возможностью одновременной загрузки до 400 стекол. Такие микроскопы в настоящее время получили наибольшее распространение. Вторым видом являются микроскопы, имеющие размеры и внешний вид, аналогичные стандартным световым микроскопам. Открытость данной системы позволяет проводить множество видов микроскопии, однако с меньшей вместимостью стекол, что делает возможным их применение в небольших лабораториях, в том числе для научно-исследовательских целей. Среди компактных микроскопов, по размерам сопоставимым со смартфоном, часть моделей имеют высокую доступность благодаря возможности печати на 3D принтере. Однако такие микроскопы используются для визуализации структур, требующих небольшое увеличение, что ограничивает их применение в патологической анатомии. Четвертый вид – световые микроскопы с «навесным» оборудованием для сканирования. В основе данного вида устройств используется стандартный микроскоп, к которому крепится оборудование, позволяющее автоматизировать процесс сканирования, с деталями, напечатанными на 3D принтере. Использование навесных деталей может иметь большой потенциал применения в цифровой патологии, поскольку значительно снижает стоимость устройства. Кроме того, на базе стандартных микроскопов возможно создание устройств, сканирующих любые виды предметных стекол, что также делает данные микроскопы доступными для применения в любых лабораториях.

Выводы. Проведенный обзор литературы показал широкие возможности применения полного сканирования морфологических материалов. Развивающаяся сфера телемедицины – телепатология – создает потребность в разработке новых технологий.

Прикрепленный файл Размер
Скачать статью 3.78 МБ
Ключевые слова: телепатология; WSI (Whole slide imaging); световая микроскопия; цифровая патология