Skip to main content
Number №4, 2025
Legal Sovereignty of the Individual in Digital Healthcare in the Era of Artificial Intelligence
Number №3, 2025
Digital Health: Forecast for 2025-2030
Number №2, 2025
Digital technologies in remote monitoring of childbirth with a Clinical decision support system (CDSS)
Number №1, 2025
Digital technologies for health promotion and disease prevention in older adults
Number №4, 2024
Computer reconstruction of the interaction of genes associated with Angelman syndrome
Number №3, 2024
Telemedicine today: trends in the use of telemedicine consultations based on regional experience
Number №2, 2024
Mobile apps for psychological well-being: user attitudes and definition of requirements
Number №1, 2024
Diagnosis in the era of digital medicine
Number №4, 2023
Artificial intelligence in Russian healthcare: collecting and preparing data for machine learning
Number №3, 2023
China as a supplier of medical equipment in the Russian Federation. Options for cooperation and features of working with Chinese suppliers
Number №2, 2023
Experience in teaching telemedicine in the system of higher professional education The attitude of medical workers to telemedicine technologies
Number №4, 2022
Physician burnout: the hidden healthcare crisis. Results of an online survey of doctors
Number №3, 2022
Interaction of clinical and diagnostic medicine. Results of an online survey of doctors
Number №2, 2022
Mobile applications for mental health self-management: a review of customers’ opinions Ultrasound robots: ready-to-use solutions and perspective directions
Number №1, 2022
Digital transformation of the pathological service as a way to improve the quality of medical care
Number №4, 2021
Clinical guidelines of the Ministry of Health of the Russian Federation: are doctors ready to follow them? Results of an online survey of doctors.
Number №3, 2021
Виртуальная реальность (VR) в клинической медицине: международный и российский опыт
Number №2, 2021
Дистанционные консультации пациентов: что изменилось за 20 лет?
Number №1, 2021
Experience of participation in the blood pressure telemonitoring pilot project of the Ministry of Healthcare
Number №4, 2020
Автоматизация процесса выявления у беременных заболевания COVID-19
Number №3, 2020
Remote cognitive behavioral therapy for stress disorder associated with the COVID-19 pandemic
Number №2, 2020
Distance education at a medical school during the COVID-19 pandemic: the first experience through the eyes of students
Number №1-2, 2018
Ответственность при использовании телемедицины: врач или юрист Скрининг меланомы: искусственный интеллект, mHealth и теледерматология
Number №3, 2018 год
II Всероссийский форум по телемедицине, цифровизации здравоохранения и медицинскому маркетингу «ТЕЛЕМЕДФОРУМ 2019» Эффективность телемедицинских консультаций «пациент-врач» Телереабилитация: рандомизированное исследование исходов
Number №1-2, 2019
Роль искусственного интеллекта в медицине Информационная система поддержки принятия врачебных решений
Number №1, 2020
Technologies for continuous monitoring of blood pressure: prospects for practical application Telemedicine technologies in the Chinese army
Number №2, 2017
Primary telemedicine consultation "patient-doctor": first systematization of methodology
Number №1, 2017
1. A systematic review of using Internet messengers in telemedicine 2. Telemedicine and social networks in the fight against drug addiction
Number №1, 2016
1. The Experience of the Telehealth Network of Minas Gerais, Brazil 2. The Remote Monitoring of Patients with Congestive Heart Failure:The Organizational Impact..
Number №1, 2015
Teleassessment for diagnosis and treatment in urology Efficiency of telemedicine at the northern regions Russian Federation A.L. Tsaregorodtsev

«CORINTEL.TECH»: artificial intelligence for electrocardiogram annotation

Number №2, 2025 - page 14-18
DOI: 10.29188/2712-9217-2025-11-2-14-18
For citation: Antipova A.A., Dolmatova S.A., Volkova D.A., Khatsiev R.T., Yaroshenko A.V., Andrikov D.A. «CORINTEL.TECH»: artificial intelligence for electrocardiogram annotation. Russian Journal of Telemedicine and E-Health 2025;11(2):14-18; https://doi.org/10.29188/2712-9217-2025-11-2-14-18
Antipova A.A., Dolmatova S.A., Volkova D.A., Haciev R.T., Yaroshenko A.V., Andrikov D.A.
Information about authors:
  • Antipova A.A. – 5th-year student of the Faculty of Medical Biochemistry, student of the Digital Department 2024-2025, Project Leader of CORINTEL.TECH, I.M. Sechenov First Moscow State Medical University (Sechenov University); Moscow, Russia
  • Dolmatova S.A. – student of the Faculty of General Medicine, student of the Digital Department 2024-2025, Donetsk National Medical University; Donetsk, DPR
  • Volkova D.A. – student of the Faculty of Civilian Medical (Pharmaceutical) Specialists, student of the Digital Department 2024-2025, S.M. Kirov Military Medical Academy; Saint Petersburg, Russia
  • Khatsiev R.T. – student of the «Applied Mathematics and Informatics» program, Faculty of the Academy of Engineering of RUDN University; Moscow, Russia
  • Yaroshenko A.V. – postgraduate student, Academy of Engineer- ing of RUDN University; Bachelor's and Master's degrees from the MIPT; Employee of CARDIOTECH LLC; Moscow, Russia
  • Andrikov D.A. – PhD (Eng.), engineer, scientific supervisor of the CORINTEL.TECH project, Associate Professor of the Department of Information Technologies and Medical Data Processing, I.M. Sechenov First Moscow State Medical University (Sechenov University); Moscow, Russia
515
Download PDF

The «CORINTEL.TECH» project represents an artificial intelligence (AI)–based software solution for the analysis and annotation of 12-lead electrocardiograms (ECGs).

The primary objective of the project is to enhance diagnostic speed and accuracy, optimize healthcare resource utilization, and provide an educational tool for medical professionals.

The development is aimed at addressing the national healthcare priority «Combating cardiovascular diseases» within the framework of the Russian national project «Healthcare».

The system employs a hybrid architecture that combines a convolutional neural network (CNN) with an attention mechanism for diagnostic feature extraction and a large language model (LLM) for generating a comprehensive textual interpretation.

Attachment Size
Download 209.86 KB
Keywords: artificial intelligence; electrocardiogram; ECG annotation; convolutional neural network; large lan- guage model; automated interpretation; cardiology; digital health; cardiovascular disease diagnostics