Skip to main content
Number №4, 2025
Legal Sovereignty of the Individual in Digital Healthcare in the Era of Artificial Intelligence
Number №3, 2025
Digital Health: Forecast for 2025-2030
Number №2, 2025
Digital technologies in remote monitoring of childbirth with a Clinical decision support system (CDSS)
Number №1, 2025
Digital technologies for health promotion and disease prevention in older adults
Number №4, 2024
Computer reconstruction of the interaction of genes associated with Angelman syndrome
Number №3, 2024
Telemedicine today: trends in the use of telemedicine consultations based on regional experience
Number №2, 2024
Mobile apps for psychological well-being: user attitudes and definition of requirements
Number №1, 2024
Diagnosis in the era of digital medicine
Number №4, 2023
Artificial intelligence in Russian healthcare: collecting and preparing data for machine learning
Number №3, 2023
China as a supplier of medical equipment in the Russian Federation. Options for cooperation and features of working with Chinese suppliers
Number №2, 2023
Experience in teaching telemedicine in the system of higher professional education The attitude of medical workers to telemedicine technologies
Number №4, 2022
Physician burnout: the hidden healthcare crisis. Results of an online survey of doctors
Number №3, 2022
Interaction of clinical and diagnostic medicine. Results of an online survey of doctors
Number №2, 2022
Mobile applications for mental health self-management: a review of customers’ opinions Ultrasound robots: ready-to-use solutions and perspective directions
Number №1, 2022
Digital transformation of the pathological service as a way to improve the quality of medical care
Number №4, 2021
Clinical guidelines of the Ministry of Health of the Russian Federation: are doctors ready to follow them? Results of an online survey of doctors.
Number №3, 2021
Виртуальная реальность (VR) в клинической медицине: международный и российский опыт
Number №2, 2021
Дистанционные консультации пациентов: что изменилось за 20 лет?
Number №1, 2021
Experience of participation in the blood pressure telemonitoring pilot project of the Ministry of Healthcare
Number №4, 2020
Автоматизация процесса выявления у беременных заболевания COVID-19
Number №3, 2020
Remote cognitive behavioral therapy for stress disorder associated with the COVID-19 pandemic
Number №2, 2020
Distance education at a medical school during the COVID-19 pandemic: the first experience through the eyes of students
Number №1-2, 2018
Ответственность при использовании телемедицины: врач или юрист Скрининг меланомы: искусственный интеллект, mHealth и теледерматология
Number №3, 2018 год
II Всероссийский форум по телемедицине, цифровизации здравоохранения и медицинскому маркетингу «ТЕЛЕМЕДФОРУМ 2019» Эффективность телемедицинских консультаций «пациент-врач» Телереабилитация: рандомизированное исследование исходов
Number №1-2, 2019
Роль искусственного интеллекта в медицине Информационная система поддержки принятия врачебных решений
Number №1, 2020
Technologies for continuous monitoring of blood pressure: prospects for practical application Telemedicine technologies in the Chinese army
Number №2, 2017
Primary telemedicine consultation "patient-doctor": first systematization of methodology
Number №1, 2017
1. A systematic review of using Internet messengers in telemedicine 2. Telemedicine and social networks in the fight against drug addiction
Number №1, 2016
1. The Experience of the Telehealth Network of Minas Gerais, Brazil 2. The Remote Monitoring of Patients with Congestive Heart Failure:The Organizational Impact..
Number №1, 2015
Teleassessment for diagnosis and treatment in urology Efficiency of telemedicine at the northern regions Russian Federation A.L. Tsaregorodtsev

Intelligent сhatbot MS-Assist for clinical decision support in multiple sclerosis

Number №2, 2025 - page 19-23
DOI: 10.29188/2712-9217-2025-11-2-19-23
For citation: Arsentyeva N.V. Intelligent сhatbot MS-Assist for clinical decision support in multiple sclerosis. Russian Journal of Telemedicine and E-Health 2025;11(2):19-23; https://doi.org/10.29188/2712-9217-2025-11-2-19-23
Arsent'eva N.V.
Information about authors:
  • Arsentyeva N.V. – postgraduate student at Belgorod State National Research University (NRU «BelSU»), Institute of Engineering and Digital Technologies; Belgorod, Russia
398
Download PDF

Multiple sclerosis (MS) represents a significant interdisciplinary challenge requiring accurate and timely diagnosis, as well as complex, long-term patient management. Amid shortages of specialized physicians and high disease variability, digital clinical decision support systems (CDSS) are becoming critically important tools. This article describes the development and testing of the MS-Assist intelligent chatbot, designed to support physicians and provide informational guidance to patients with MS in the Russian Federation. The system is based on a Retrieval-Augmented Generation (RAG) architecture, integrates current national clinical guidelines (KR739_MS), and utilizes a domestic large language model (GigaChat). The prototype, implemented in Telegram, includes modules for calculating the EDSS score, diagnostic algorithms based on the McDonald criteria, and selection of DMTs. Testing involving 388 users showed high usability ratings (4.6 out of 5) and strong demand among the target audiences. MS-Assist demonstrates the potential to reduce diagnostic time, automate routine tasks, and be scaled to other nosologies.

Attachment Size
Download 229.5 KB
Keywords: multiple sclerosis; clinical decision support system; chatbot; artificial intelligence; RAG; GigaChat; EDSS; McDonald criteria; DMT; digital health