Перейти к основному содержанию
Выпуск №4, 2025
Правовой суверенитет личности в цифровом здравоохранении в эпоху искусственного интеллекта
Выпуск №3, 2025
Цифровое здравоохранение: прогноз на 2025-2030 гг
Выпуск №2, 2025
Цифровые технологии в удаленном мониторинге родов с системой поддержки принятия врачебных решений (СППВР)
Выпуск №1, 2025
Цифровые технологии для укрепления здоровья и профилактики заболеваний у пожилых людей
Выпуск №4, 2024
Компьютерная реконструкция взаимодействия генов, ассоциированных с синдромом Ангельмана
Выпуск №3, 2024
Телемедицина сегодня: тенденции использования телемедицинских консультаций на опыте регионов
Выпуск №2, 2024
Мобильные приложения для психологического благополучия: отношение пользователей и определение требований
Выпуск №1, 2024
Диагноз в эпоху цифровой медицины
Выпуск №4, 2023
Искусственный интеллект в здравоохранении России: сбор и подготовка данных для машинного обучения
Выпуск №3, 2023
Китай как поставщик медицинского оборудования в РФ. Варианты сотрудничества и особенности работы с китайскими поставщиками
Выпуск №2, 2023
Опыт преподавания телемедицины в системе высшего профессионального образования Отношение медицинских работников к телемедицинским технологиям
Выпуск №1, 2023
Новые подходы к диагностическим информационным системам в радиологии Модифицируемые факторы среды помещения: влияние на здоровье человека и цифровой мониторинг Антропоморфные роботы в медицине: варианты технологий и перспективы
Выпуск №4, 2022
Профессиональное выгорание врачей: скрытый кризис здравоохранения. Данные интернет-опроса врачей
Выпуск №3, 2022
Взаимодействие клинической и диагностической медицины. Результаты интернет-опроса врачей
Выпуск №2, 2022
Мобильные приложения для поддержания психического здоровья: обзор оценок пользователей Роботы УЗИ: готовые решения и перспективные направления
Выпуск №1, 2022
Цифровая трансформация патологоанатомической службы как путь повышения качества медицинской помощи
Выпуск №4, 2021
Клинические рекомендации МЗ РФ: готовы ли врачи их выполнять? Результаты интернет-опроса врачей.
Выпуск №3, 2021
Виртуальная реальность (VR) в клинической медицине: международный и российский опыт
Выпуск №2, 2021
Дистанционные консультации пациентов: что изменилось за 20 лет?
Выпуск №1, 2021
Первые результаты участия в пилотном проекте Минздрава России по дистанционному мониторированию артериального давления
Выпуск №4, 2020
Автоматизация процесса выявления у беременных заболевания COVID-19
Выпуск №3, 2020
Дистанционная когнитивно-поведенческая психотерапия стрессового расстройства, связанного с пандемией COVID-19
Выпуск №2, 2020
Дистанционное образование в медицинском вузе в период пандемии COVID-19: первый опыт глазами студентов
Выпуск №1, 2020
Технологии продолжительного мониторинга артериального давления: перспективы практического применения Телемедицинские технологии в армии Китая
Выпуск №1-2, 2019
Роль искусственного интеллекта в медицине Информационная система поддержки принятия врачебных решений
Выпуск №3, 2018 год
II Всероссийский форум по телемедицине, цифровизации здравоохранения и медицинскому маркетингу «ТЕЛЕМЕДФОРУМ 2019» Эффективность телемедицинских консультаций «пациент-врач» Телереабилитация: рандомизированное исследование исходов
Номер №1-2, 2018
Ответственность при использовании телемедицины: врач или юрист Скрининг меланомы: искусственный интеллект, mHealth и теледерматология
Номер №3, 2017
Телемедицинские технологии для службы лучевой диагностики Москвы
Номер №2, 2017
Первичная телемедицинская консультация «пациент-врач»: первая систематизация методологии
Номер №1, 2017
1. Систематический обзор применения интернет-мессенджеров в телемедицине 2. Телемедицина и социальные сети в борьбе с наркозависимостью
Номер №1, 2016 (Пилотный выпуск)
1. Систематический обзор эффективности и значимости носимых устройств в  практическом здравоохранении 2. Организация виртуальных посещений отделений интенсивной терапии..
Номер №1, 2015 (Пилотный выпуск)
1. Телеассистирование в диагностике и лечении урологических заболеваний 2. Телемониторинг пациентов с кистозным фиброзом: результаты 10 лет работы

Глубокое машинное обучение (искусственный интеллект) в ультразвуковой диагностике

DOI: 10.29188/2542-2413-2020-6-2-22-29
Для цитирования: Лебедев Г.С., Маслюков А.П.., Шадеркин И.А., Шадеркина А.И. Глубокое машинное обучение (искусственный интеллект) в ультразвуковой диагностике. Журнал телемедицины и электронного здравоохранения 2020;(2):22-29
Лебедев Г.С., Шадеркин И.А., Шадеркина А.И., Маслюков А.П.
2985

Введение. Несмотря на давность применения и изученность ультразвукового исследования, его выполнение до сих пор считается сложным оператор-зависимым процессом, требующим многолетнего обучения и большого практического опыта, что делает его результаты трудно воспроизводимыми. Цель обзора – проанализировать методы машинного обучения (искусственного интеллекта – ИИ) в ультразвуковой диагностике и поиск решений проблем, связанных с методикой.

Материалы и методы. Авторы провели тщательный анализ литературы, используя поисковые системы e-library, Pubmed, Schoolar Google, IEEE и проанализировали опубликованные материалы более чем из 106 журналов или конференций по данной теме (Med Imaging, Cell Biochem Biophys, International Journal of Advanced Computer Science and Applications, Journal of Medical Systems и др.), среди которых были отобраны 36, описывающих применение машинного обучения для УЗИ в период до 15 января 2020 года.

Результаты. Мы показали возможности применения методов машинного обучения в диагностике заболеваний различных органов: опухолей молочной железы, узлов щитовидной железы, очаговых заболеваний печени, заболеваний сердечно-сосудистой системы. Во всех случаях САО показало себя достаточно успешно, наравне, а иногда и превышая показатели опытных клиницистов.

Выводы. Применение САО в ультразвуковой диагностике имеет ряд сложностей, таких, как плохое качество изображений, наличие шумов, малое число изображений для анализа. Для их преодоления применяется предварительная обработка изображений с удалением шумов, аугментация данных, создание открытых баз данных. Тем не менее, в настоящее время существуют огромные различия в количестве и модальности набора данных, используемых в различных исследованиях, поэтому трудно справедливо оценить их производительность. Для решения этой проблемы требуется создание стандартизированных наборов данных, что должно стать целью будущих исследований.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Прикрепленный файл Размер
Скачать статью 694.51 КБ
Ключевые слова: глубокое машинное обучение, искусственный интеллект, ультразвуковая диагностика