Введение. Несмотря на давность применения и изученность ультразвукового исследования, его выполнение до сих пор считается сложным оператор-зависимым процессом, требующим многолетнего обучения и большого практического опыта, что делает его результаты трудно воспроизводимыми. Цель обзора – проанализировать методы машинного обучения (искусственного интеллекта – ИИ) в ультразвуковой диагностике и поиск решений проблем, связанных с методикой.
Материалы и методы. Авторы провели тщательный анализ литературы, используя поисковые системы e-library, Pubmed, Schoolar Google, IEEE и проанализировали опубликованные материалы более чем из 106 журналов или конференций по данной теме (Med Imaging, Cell Biochem Biophys, International Journal of Advanced Computer Science and Applications, Journal of Medical Systems и др.), среди которых были отобраны 36, описывающих применение машинного обучения для УЗИ в период до 15 января 2020 года.
Результаты. Мы показали возможности применения методов машинного обучения в диагностике заболеваний различных органов: опухолей молочной железы, узлов щитовидной железы, очаговых заболеваний печени, заболеваний сердечно-сосудистой системы. Во всех случаях САО показало себя достаточно успешно, наравне, а иногда и превышая показатели опытных клиницистов.
Выводы. Применение САО в ультразвуковой диагностике имеет ряд сложностей, таких, как плохое качество изображений, наличие шумов, малое число изображений для анализа. Для их преодоления применяется предварительная обработка изображений с удалением шумов, аугментация данных, создание открытых баз данных. Тем не менее, в настоящее время существуют огромные различия в количестве и модальности набора данных, используемых в различных исследованиях, поэтому трудно справедливо оценить их производительность. Для решения этой проблемы требуется создание стандартизированных наборов данных, что должно стать целью будущих исследований.
Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.
Attachment | Size |
---|---|
Скачать статью | 694.51 KB |