Skip to main content
Number №4, 2025
Legal Sovereignty of the Individual in Digital Healthcare in the Era of Artificial Intelligence
Number №3, 2025
Digital Health: Forecast for 2025-2030
Number №2, 2025
Digital technologies in remote monitoring of childbirth with a Clinical decision support system (CDSS)
Number №1, 2025
Digital technologies for health promotion and disease prevention in older adults
Number №4, 2024
Computer reconstruction of the interaction of genes associated with Angelman syndrome
Number №3, 2024
Telemedicine today: trends in the use of telemedicine consultations based on regional experience
Number №2, 2024
Mobile apps for psychological well-being: user attitudes and definition of requirements
Number №1, 2024
Diagnosis in the era of digital medicine
Number №4, 2023
Artificial intelligence in Russian healthcare: collecting and preparing data for machine learning
Number №3, 2023
China as a supplier of medical equipment in the Russian Federation. Options for cooperation and features of working with Chinese suppliers
Number №2, 2023
Experience in teaching telemedicine in the system of higher professional education The attitude of medical workers to telemedicine technologies
Number №4, 2022
Physician burnout: the hidden healthcare crisis. Results of an online survey of doctors
Number №3, 2022
Interaction of clinical and diagnostic medicine. Results of an online survey of doctors
Number №2, 2022
Mobile applications for mental health self-management: a review of customers’ opinions Ultrasound robots: ready-to-use solutions and perspective directions
Number №1, 2022
Digital transformation of the pathological service as a way to improve the quality of medical care
Number №4, 2021
Clinical guidelines of the Ministry of Health of the Russian Federation: are doctors ready to follow them? Results of an online survey of doctors.
Number №3, 2021
Виртуальная реальность (VR) в клинической медицине: международный и российский опыт
Number №2, 2021
Дистанционные консультации пациентов: что изменилось за 20 лет?
Number №1, 2021
Experience of participation in the blood pressure telemonitoring pilot project of the Ministry of Healthcare
Number №4, 2020
Автоматизация процесса выявления у беременных заболевания COVID-19
Number №3, 2020
Remote cognitive behavioral therapy for stress disorder associated with the COVID-19 pandemic
Number №2, 2020
Distance education at a medical school during the COVID-19 pandemic: the first experience through the eyes of students
Number №1-2, 2018
Ответственность при использовании телемедицины: врач или юрист Скрининг меланомы: искусственный интеллект, mHealth и теледерматология
Number №3, 2018 год
II Всероссийский форум по телемедицине, цифровизации здравоохранения и медицинскому маркетингу «ТЕЛЕМЕДФОРУМ 2019» Эффективность телемедицинских консультаций «пациент-врач» Телереабилитация: рандомизированное исследование исходов
Number №1-2, 2019
Роль искусственного интеллекта в медицине Информационная система поддержки принятия врачебных решений
Number №1, 2020
Technologies for continuous monitoring of blood pressure: prospects for practical application Telemedicine technologies in the Chinese army
Number №2, 2017
Primary telemedicine consultation "patient-doctor": first systematization of methodology
Number №1, 2017
1. A systematic review of using Internet messengers in telemedicine 2. Telemedicine and social networks in the fight against drug addiction
Number №1, 2016
1. The Experience of the Telehealth Network of Minas Gerais, Brazil 2. The Remote Monitoring of Patients with Congestive Heart Failure:The Organizational Impact..
Number №1, 2015
Teleassessment for diagnosis and treatment in urology Efficiency of telemedicine at the northern regions Russian Federation A.L. Tsaregorodtsev

Deep machine learning (artificial intelligence) in ultrasound diagnostics

Number №2, 2020 - page 22-29
DOI: 10.29188/2542-2413-2020-6-2-22-29
For citation: Lebedev G.S., Maslyukov A.P., Shaderkin I.A., Shaderkina A.I. Deep machine learning (artificial intelligence) in ultrasound diagnostics. Journal of Telemedicine and E-Health 2020;(2):22-29
Lebedev G.S., Shaderkin I.A., Shaderkina A.I., Maslyukov A.P.
Information about authors:
  • Lebedev G.S. – Dr. Sc., professor, Head of the Department of Information and Internet Technologies at Sechenov University; Head of the Department of Innovative Development and Scientific Design of the Central Research Institute of Organization and Informatization of Health Care of the Ministry of Health of the Russian Federation
  • Maslyukov A.P. - 5th year student of the Medical School «Medicine of the Future» of the First Moscow State Medical University them Sechenov (Sechenov University)
  • Shaderkin I.A. – PhD, Head of the Laboratory of Electronic Health, Institute of Digital Medicine, Sechenov University, ORCID 0000-0001-8669-2674
  • Shaderkina A.I. – 1st year student Institute of Clinical Medicine of the First Moscow State Medical University them I.M. Sechenov (Sechenov University), ORCID 0000-0003-0639-3274
11577
Download PDF

Aim of the review is to analyze methods of machine learning (artificial intelligence – AI) in ultrasound investigation and to search solutions connected with the methodology.

Materials and methods. Authors conducted careful analysis of literature using e-library, Pubmed, Schoolar Google, IEEE and analyzed materials published on this theme from more than 106 journals and conferences (Med Imaging, Cell Biochem Biophys, International Journal of Advanced Computer Science and Applications, Journal of Medical Systems etc), and from this materials were selected only 36 which described application of machine learning for ultrasound.

Results. We showed opportunities of application of machine learning methods in detection of different organs diseases such as breast tumor, thyroid nodules, focal lesions of liver, cardiovascular system diseases. In all these cases САО showed quite successful results, on a par and sometimes better than skilled clinicians’ ones.

Conclusions. Application of САО in ultrasonic investigation has several complications such as bad quality of images, artifacts, few images for analyzing. For solving these problems preliminary image processing with artifacts remove, data augmentation, developing a data base is used. Nevertheless, currently there are huge differences in amount and modality of typesetting used in different researches, therefore it is hard to fairly estimate their capacity. For solving of this problem developing of standardized database is required. It should become the aim of further researches.

Conflict of interest. The author declare no conflict of interest

Attachment Size
Download 694.51 KB
Keywords: deep machine learning, artificial intelligence, ultrasound diagnostics